

**Journal of Sport Science & Innovation
(JOSSI)**
<https://jossijournal.com>

A Review Study on Olympic Weightlifting

**Zehra KILINCARSLAN¹
Kenan ERDAĞI²**

To cite this article:

Kilincarslan, Z. & Erdağı, K. (2025). A Review Study on Olympic Weightlifting. *Journal of Sport Science & Innovation (JOSSI)*, Vol (1); Issue (1), Page 54-Page 73.

The Journal of Sport Science & Innovation (JOSSI) is an international scientific, high-quality open access, peer-reviewed scholarly journal that provides a comprehensive range of unique online-only journal submission services to academics, researchers, advanced doctoral students, and other professionals in their field. This journal publishes original research papers, theory-based empirical papers, review papers, case studies, conference reports, book reviews, essays, and relevant reports twice a year.

¹ Departments of Physical Education and Sports, Institute of Education Sciences, Necmettin Erbakan University, MSc Student, Konya, Türkiye, behlulzehrab@gmail.com

² Associate professor, Departments of Physical Education and Sports, Ahmet Keleşoğlu Faculty of Education, Necmettin Erbakan University, 42090, Konya, Türkiye, kenanerdagi42@gmail.com

A Review Study on Olympic Weightlifting

Zehra Kılincarslan <https://orcid.org/0009-0003-1703-7846> Kenan Erdağı <https://orcid.org/0000-0002-2338-6546> **ARTICLE INFORMATION**

Review Article

Received: November 2, 2025

Accepted: November 30, 2025

Published: December 12, 2025

Journal of Sport Science & Innovation
(JOSSI) <https://jossijournal.com>
2025, Volume 1, Issue 1, Pages: 54-73**ABSTRACT**

Olympic weightlifting represents a multifaceted athletic discipline performed at the international level, demanding exceptional technical proficiency, maximal muscular strength, and refined neuromuscular coordination. The purpose of this review is to synthesize current scientific evidence addressing the primary determinants of performance, technical execution, muscular morphology, and anthropometric characteristics, as well as age- and sex-related variations, injury risks, and preventive strategies unique to Olympic weightlifting. This study provides a comprehensive examination of the sport's principal technical phases, the snatch and the clean and jerk, by analyzing the barbell's kinematic trajectory, force generation profiles, muscle activation patterns, and motor learning mechanisms. Evidence from the literature concerning muscular morphology highlights the association of cross-sectional area and thickness of key muscle groups—particularly the multifidus and vastus lateralis with both performance efficiency and spinal stability. Anthropometric indicators were evaluated relative to performance, accounting for morphological variations across age groups and weight categories. The influence of sex-based differences on injury types and risk profiles was also discussed. The existing literature further indicates that weightlifting training, when properly supervised and accompanied by appropriate technical instruction, can be safely implemented in children and adolescent athletes. This review not only provides a scientific perspective on Olympic weightlifting but also aims to deliver comprehensive, practice-oriented insights for sport scientists, coaches, and health professionals involved in athlete development and injury prevention.

Keywords: Olympic Weightlifting, Performance Determinants, Muscle Morphology, Biomechanics, Technical Analysis, Anthropometry, Injury Risk, Gender Differences, Age Factor, Safe Training

This is an open access article distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original authors and source are credited.

1. Introduction

Olympic weightlifting is a highly competitive sport practiced at the international level, demanding exceptional technical proficiency, maximal strength, and explosive power. An athlete's success in this discipline depends not only on physical capacity but also on technical mastery, a systematic training process, and a well-structured coaching approach (USA Weightlifting, 2015). Competitions organized by the International Weightlifting Federation (IWF) consist of two primary lifts—the snatch and the clean and jerk (IWF, 2020). Each of these lifts requires precise technical control at every stage of the movement chain; even minor deviations can result in an invalid attempt. Despite its emphasis on technical precision and biomechanical control, weightlifting has often been misperceived as a sport carrying an inherently high risk of injury. However, the findings reported by Pierce et al. (2003) demonstrate that this perception is largely inaccurate. In a one-year study involving children aged 7–16 years, no injuries occurred during weightlifting sessions that were conducted with proper technique and under qualified supervision. Moreover, across 534 competitive lifts, there were no cases requiring medical intervention. These results indicate that, when performed under appropriate conditions, weightlifting is a considerably safer sport for children than is often assumed. In particular, more recent studies have reinforced this conclusion, showing that, with improved understanding of performance components and injury mechanisms, Olympic weightlifting can be a remarkably safe discipline when executed correctly. Long-term surveillance data from elite lifters revealed that most injuries (64.8%) occurred in the back, knees, and shoulders and that the predominant types were strains and tendinitis. Additionally, 59.6% of these injuries were classified as acute, 30.4% as overuse-related, and 90.5% involved a recommended time loss from training of less than one day. The combined rate of acute and recurrent injuries was approximately 3.3 per 1,000 hours of training exposure (Calhoun & Fry, 1999).

Olympic weightlifting comprises two fundamental lifts: the snatch and the clean and jerk. Both techniques require a high degree of explosive power generation, technical proficiency, and motor control. Therefore, technical analysis plays a crucial role in evaluating and improving the performance of elite athletes (Garhammer, 1985). The performance components in weightlifting are directly influenced not only by technical skill but also by physiological parameters such as neuromuscular coordination, maximal force production, and the distribution of muscle fiber types (Storey & Smith, 2012).

This literature review aims to examine, based on scientific evidence, the key determinants of performance, technical characteristics, muscle morphology, injury incidence, sex- and age-related differences, and safety considerations specific to Olympic weightlifting. The information presented aims to provide sport scientists, coaches, physiotherapists, and sports medicine professionals with an updated and systematic perspective on these interrelated factors.

2. Weightlifting Techniques and Terminology

Both Olympic lifts consist of several distinct phases: starting position, first pull, transition, second pull, catch, and recovery. Technical success depends on the fluent integration and precise timing of these sequential stages. Garhammer (1985) emphasized that during the second pull, the barbell reaches its maximum vertical velocity and peak power output, highlighting the critical importance of this phase in overall performance.

Pedagogically, coaches traditionally employ a 'bottom-up' approach, initiating instruction from the floor upward. However, Brewer (2006) proposed the use of backward sequencing, a method consistent with motor learning principles, in which instruction begins from the final positions of the lift. This approach

uses progressive, eight-step teaching sequences (e.g., jump-shrug, pull from the thigh or knee, reverse to floor), allowing athletes to build movement proficiency through reverse chaining of motor patterns.

To enhance safety and the acquisition of technical skill, Gardner et al. (2013) recommended initiating lifts from block heights at mid-thigh, above-knee, or below-knee. This method reduces the load on the lumbar spine and facilitates the development of postural stability in novice lifters. Furthermore, the authors reported that block lifting assists individuals with limited mobility in maintaining a more vertical and controlled bar path, thereby improving overall technical execution. Consequently, this approach not only mitigates the risk of injury but also promotes more effective motor learning throughout the kinetic sequence of the lift.

Garhammer and Takano (1992) examined Olympic weightlifting techniques from a biomechanical perspective and analyzed how variations, such as block lifts, influence performance by altering joint angles and force production. Their findings highlighted the importance of understanding how specific lift modifications can optimize power transfer and movement efficiency. Such variations are typically employed by advanced athletes not primarily for technical development, but rather to target specific strength and power characteristics relevant to performance demands.

During technical instruction, factors beyond absolute load, such as barbell trajectory, velocity profiles, and muscle activation patterns, should also be considered to ensure efficient movement mechanics. Despite the complexity of these technical phases, studies in elite populations indicate that the majority of reported injuries are not due to acute joint trauma but rather result from repetitive overuse patterns accumulated over time (Calhoon & Fry, 1999).

Gardner et al. (2013) identified that commonly used technical terms in Olympic weightlifting, particularly those describing lifts such as the snatch, power snatch, and hang clean, are often applied inconsistently or inaccurately across coaches and training programs. To address this issue, the authors proposed a systematic classification based on the official terminology of USA Weightlifting, defining movements according to their specific start and end positions. They emphasized that adopting standardized terminology not only enhances communication among coaches but also promotes conceptual clarity and instructional efficiency in technical teaching processes.

In addition, Brewer (2006) highlighted that effective technical instruction should integrate biomechanical precision with neuromuscular adaptation mechanisms. Specifically, he noted that the double knee bend (DKB) movement activates the stretch–shortening cycle (SSC) within the muscle–tendon system, thereby augmenting power output. According to Brewer, this motor pattern can be more effectively internalized through systematic technical drills that reinforce natural and durable motor learning.

In conclusion, technical performance in Olympic weightlifting is shaped not solely by motor skill, but by the interaction among biomechanical efficiency, neuromuscular control, and pedagogical strategy. Eliminating inconsistencies in terminology and adopting structured, evidence-based instructional approaches are critical for both enhancing performance and minimizing injury risk.

3. Biomechanics and Muscle Morphology

Olympic weightlifting requires a high degree of neuromuscular coordination, explosive force generation, and synchronized function of the musculoskeletal system. Garhammer's (1985) biomechanical analyses demonstrated that these characteristics are most pronounced during the second pull, when maximal power output is achieved. Accordingly, biomechanical assessment serves as a fundamental tool for evaluating and improving elite-level performance.

Storey and Smith (2012) noted that one of the most critical determinants of maximal force production in weightlifting is muscle fiber composition, particularly the predominance of type IIb fast-twitch fibers, which play a decisive role in generating rapid, high-intensity contractions. They also emphasized that the interaction between the nervous system and skeletal muscle, specifically neuromuscular synchronization, directly contributes to superior lifting performance.

Further evidence from Garhammer's (1985) biomechanical evaluation of gold medalists at the 1984 Olympic Games demonstrated that the second-pull phase is the point of maximal barbell velocity and peak power production. These findings underscore the significance of precise technical timing and force generation in determining elite performance outcomes.

Consistent with this biomechanical evidence, Sitilertpisan et al. (2012) conducted a clinical study that used ultrasound imaging to evaluate the cross-sectional area (CSA) of the lumbar multifidus muscle in elite weightlifters. The results revealed no significant asymmetry between the left and right sides, while male lifters exhibited larger multifidus CSA at the L4 and L5 vertebral levels compared with female athletes. Moreover, there were no significant differences in multifidus CSA between athletes with and without a history of low back pain. These findings suggest that regular training in weightlifting contributes to the maintenance or enhancement of segmental spinal stability (Sitilertpisan et al., 2012).

In the study by Suarez et al. (2020), the morphological characteristics of the vastus lateralis muscle—specifically muscle thickness (MT), cross-sectional area (CSA), and pennation angle (PA)—were examined in competitive male and female weightlifters to explore their relationships with various performance variables. Using ultrasonography, the researchers assessed the correlations between these morphological measures and isometric peak force (IPF), loaded and unloaded countermovement-jump height, and weightlifting performance indicators (snatch, clean and jerk, and total). The results revealed that, among female lifters, both CSA and MT showed strong, statistically significant correlations with snatch performance, IPF, and unloaded jump height. In contrast, similar correlations were not observed in the male group. The authors attributed this discrepancy to greater performance variability and possible individual differences among the male athletes. These findings suggest that lower-limb muscle morphology, particularly in female weightlifters, plays a critical role in performance outcomes, though the strength of this relationship may vary depending on sex and athletic level.

Additionally, Garhammer (1980) reported that power output in Olympic weightlifting peaks during the second pull phase, emphasizing the critical role of efficient force transfer to the lower extremities through proper technique. This finding underscores that technical errors can compromise not only lifting efficiency but also spinal and trunk health over time due to improper loading mechanics.

In conclusion, success in Olympic weightlifting depends not only on technical proficiency but also on biomechanical efficiency and muscle morphology. Morphological assessment of key muscle groups, such as the multifidus and quadriceps, provides valuable insights into predicting injury risk and individualizing training prescriptions to optimize performance and long-term musculoskeletal health.

4. Anthropometry and Performance Relationship

In Olympic weightlifting, physical fitness is not limited to strength parameters alone; anthropometric factors such as body composition, limb girths, and bone breadths play a direct and influential role in performance outcomes. The athlete's body structure can confer biomechanical advantages during lifting techniques, while specific anthropometric variables have been identified as meaningful predictors of competitive success.

In a study conducted among Turkish national weightlifters, Turnagöl and Demirel (1992) found significant correlations of femur epicondylar breadth and biceps circumference with clean and jerk and total lift performance. Conversely, skinfold thickness and somatotype components did not exhibit notable associations with performance measures. These findings indicate that anthropometric assessments can serve not only as indicators of physical fitness but also as valuable predictors of performance potential; therefore, they should be considered in the design of individualized training programs.

Supporting these observations, Suarez et al. (2020) examined the relationships between vastus lateralis muscle architecture specifically muscle thickness (MT), cross-sectional area (CSA), and pennation angle (PA) and various performance variables in competitive weightlifters. The results demonstrated that among female athletes, CSA and MT were strongly and significantly correlated with snatch performance, isometric peak force (IPF), and loaded countermovement jump (SJ20). In contrast, pennation angle displayed weak or nonsignificant associations with most performance measures. Collectively, these findings suggest that muscle volume parameters such as CSA and MT are positively related to performance, whereas architectural features like PA may exert only a limited influence on lifting outcomes.

Sex-based differences can influence the biomechanical factors that affect both performance and injury risk in Olympic weightlifting. Quatman et al. (2009), in a study of youth athletes in the United States, reported that female athletes experience a higher incidence of lower-extremity injuries—particularly of the foot and leg than male athletes. The authors attributed this increased susceptibility to biomechanical differences, suggesting that technique proficiency and coaching supervision may also mediate performance efficiency and injury risk.

Turnagöl and Demirel (1992) evaluated Turkish weightlifters across various bodyweight categories and identified significant differences in height, lean body mass, and body fat percentage among the groups. As body weight category increased, both body mass and fat percentage increased. These morphological variations may provide biomechanical advantages in lifting performance, particularly for athletes with greater muscle mass. Furthermore, their findings indicated that heavier weightlifters generally exhibit an endo-mesomorphic somatotype, with muscle mass serving as a key determinant of performance potential.

Garhammer (1985) further explained that variations in barbell trajectory among lifters are primarily due to individual anatomical differences especially segment lengths and muscle attachment points. This finding implies that control of bar-path mechanics is influenced by the athlete's anthropometric characteristics, highlighting the importance of individualized technical optimization.

In conclusion, weightlifting performance depends not only on strength development but also on the athlete's anthropometric and biomechanical characteristics. Training programs should therefore be individualized based on these parameters, particularly in talent identification and weight-class assignment for young athletes, to ensure both efficient performance and long-term musculoskeletal safety.

5. Sex and Age Factors

Both sex and age play a decisive role in determining performance capacity, technical proficiency, and injury risk in Olympic weightlifting. Physiological, hormonal, and anthropometric differences between male and female athletes directly influence adaptation processes and performance patterns.

5.1. Sex Differences

Quatman et al. (2009) investigated weight training-related injuries among individuals aged 14–30 years and reported distinct differences based on sex. Male athletes were more prone to strain- and sprain-type injuries of the trunk, particularly the lumbar spine, whereas female athletes exhibited a higher incidence of lower-extremity injuries. Furthermore, women were found to be more susceptible to accidental injuries such as dropping weights or tripping over equipment suggesting that biomechanical and behavioral factors may contribute to differing risk profiles between the sexes. These findings highlight the need to consider sex-specific biomechanics and technical demands in injury prevention and training design (Quatman et al., 2009).

Stone et al. (2006) emphasized that variations in hormonal profiles, neuromuscular coordination, and upper-body strength among female athletes can affect both training responses and strength development. Moreover, the authors noted that female weightlifters may exhibit distinct technical requirements, particularly in overhead lifts, due to differences in joint kinematics and stabilization capacity (Stone et al., 2006).

In a case series, Chen et al. (2009) reported that patellar tendon rupture is a rare but documented injury among competitive weightlifters and identified two female athletes among seven cases. Although the sample size was limited, the findings suggest that biomechanical and structural factors may differentially influence loading mechanisms by sex. The authors proposed that developing sex-specific injury prevention strategies could help mitigate such risks in elite lifters (Chen et al., 2009).

5.2. Age Factor: Initiation of Weightlifting in Youth

Although historically debated, current scientific evidence indicates that beginning Olympic weightlifting at a young age can be safe when performed under appropriate conditions. Pierce et al. (2003) examined athletes aged 7 to 16 years who participated in technically focused and professionally supervised weightlifting programs. Throughout the one-year study period, which included 534 competitive lifts, no injuries requiring medical intervention were reported. These findings demonstrate that age-appropriate, well-supervised training can provide a safe and effective sporting experience for youth participants (Pierce et al., 2003).

Hamill (1994) similarly emphasized that the primary risk for children engaging in weightlifting does not stem from heavy loads but rather from poor technique and inadequate supervision. The author reported that with proper coaching and structured instruction, these risks can be virtually eliminated. Consequently, the critical determinant of safety in youth weightlifting is not the age at which training begins, but the manner in which it is introduced and monitored (Hamill, 1994).

6. Injury Rates and Risk Factors

Olympic weightlifting is a sport that demands both high levels of technical precision and maximal strength. While it is often perceived as carrying a substantial risk of injury, evidence indicates that disciplined training and proper technical execution can significantly minimize this risk (Hamill, 1994).

6.1. Injury Rates

Granhed and Morelli (1988) conducted a comparative study involving retired elite Swedish weightlifters and wrestlers and reported that the prevalence of low back pain among former weightlifters was similar to that among control subjects, whereas wrestlers demonstrated a higher incidence of low back pain. However, among weightlifters, a reduction in intervertebral disc height was commonly observed, likely resulting from repetitive axial loading during training. These findings suggest that long-term adaptations to spinal loading in weightlifting do not necessarily lead to increased injury

prevalence, but can instead manifest as structural changes without clinical impairment (Granhed & Morelli, 1988).

Similarly, Calhoun and Fry (1999) conducted a six-year longitudinal study on elite male lifters at U.S. Olympic Training Centers and found that 59.6% of all injuries were classified as acute, while 30.4% were attributed to overuse mechanisms. The authors emphasized that most injuries were associated with training load management and technical execution errors rather than with competitive lifting itself. These findings indicate that with appropriate load monitoring and sound technique, the overall injury risk in Olympic weightlifting can be substantially reduced (Calhoun & Fry, 1999).

6.2. Most Frequently Injured Regions

Chen et al. (2009) reported that patellar tendon ruptures, although rare, represent serious knee injuries in weightlifters. The authors described the mechanism as a sudden knee flexion occurring during a forceful contraction of the quadriceps muscle, which indirectly highlights the potential risk of eccentric loading on the tendon. These findings underscore that even in highly trained athletes, improper or excessive eccentric stress can predispose the knee joint to acute tendon injury (Chen et al., 2009).

Similarly, in a systematic review, Aasa et al. (2017) identified the lower back, shoulders and knees as the most frequently injured anatomical regions among Olympic weightlifters and powerlifters. The review noted that spinal and shoulder injuries are more prevalent with increased training intensity and heavier lifting loads, and that many of these injuries tend to be chronic. This pattern suggests that long-term repetitive loading, particularly during overhead and deep-squat positions, can contribute to cumulative musculoskeletal strain (Aasa et al., 2017).

6.3. Risk Factors

Garhammer (1980) demonstrated that, during Olympic lifts, particularly in the second-pull phase, the high forces generated place significant mechanical loads on the lower-extremity and trunk segments. These biomechanical demands imply that technical deviations can impose long-term risks to lumbar and knee health. Aasa et al. (2017) also noted the limited number of studies directly addressing injury risk factors, but highlighted several potential contributors: excessive shoulder loading during external rotation and abduction (as seen in the snatch), excessive stress on the knees during deep squat movements, and chronic overuse without sufficient recovery. Moreover, the review mentioned external factors, such as anabolic steroid use, which has been linked in case reports to an increased risk of tendon injury.

Collectively, these findings suggest that injury prevention in Olympic weightlifting requires a multifactorial approach emphasizing biomechanical precision, progressive loading, and adequate recovery. Technical proficiency and monitoring of high-risk joint positions appear to be key components in mitigating long-term musculoskeletal strain.

7. Technique and Terminology (Snatch, Clean & Jerk)

Olympic weightlifting consists of two fundamental lifts: the snatch and the clean and jerk. Both movements demand high levels of force production, advanced coordination, and precise motor control. Terminological consistency and biomechanical accuracy are critical not only for optimizing performance but also for minimizing injury risk.

7.1. Snatch

The snatch involves lifting the barbell from the floor to an overhead position in one continuous motion. Hedrick and Wada (2008) divided the movement into several distinct phases:

First Pull: The bar is lifted from the floor to knee level while maintaining a fixed back and torso position.

Transition / Scoop: The knees are re-bent to realign the body with the barbell; there is no pause or deceleration during this phase, and barbell velocity is maintained (Hedrick & Wada, 2008; Erdagi, 2022).

Second Pull: Explosive force is generated through triple extension, i.e., the simultaneous extension of the hips, knees, and ankles.

Pull Under: The lifter actively pulls themselves downward while continuing to exert upward force on the bar, positioning the body beneath it.

Recovery: The lifter stands up to stabilize the barbell overhead, thereby completing the lift.

Garhammer and Takano (1992) compared the vertical displacement, velocity, and timing of the pull phases between elite male and female lifters, concluding that the fundamental technical structure of the snatch remains consistent regardless of sex. This finding underscores that while absolute power output may differ, the biomechanical sequencing and phase timing are universally preserved across elite athletes.

7.2. Clean & Jerk

The clean and jerk is a two-part lift composed of the clean in which the barbell is lifted from the floor to the front of the shoulders—and the jerk, in which it is driven from the shoulders to the overhead position [(Garhammer & Takano, 1992; Erdagi, 2022)].

The jerk can be further divided into four technical phases [(Garhammer & Takano, 1992)]:

Dip: The lifter maintains an upright torso while flexing the knees by approximately 10–15°, thereby effectively loading the bar. The hips remain fixed, and no forward torso inclination occurs.

Drive: Rapid extension of the hips, knees, and ankles (triple extension) produces vertical acceleration of the barbell. The goal of this phase is to impart sufficient upward momentum to allow the lifter time to move under the bar.

Catch: As the bar rises, the lifter moves rapidly beneath it. The most common technique is the split jerk, in which one foot moves forward and the other moves backward while the arms are fully extended and locked.

Recovery: The lifter brings the rear foot forward to align both feet, stabilizes the bar overhead, and holds it motionless to complete the lift.

Garhammer (1985) demonstrated that power output peaks during both the second pull and jerk phases, identifying these stages as the most biomechanically demanding and performance-defining moments in Olympic weightlifting. These findings emphasize the importance of explosive strength, technical precision, and coordination in maximizing efficiency during the clean and jerk.

8. Injury Risk and the Evaluation of Weightlifting as a Safe Sport

Olympic weightlifting, due to its high technical demands and repetitive loading patterns, may place stress on the musculoskeletal system and predispose athletes to certain injuries. However, contemporary research consistently demonstrates that proper technical instruction, well-supervised training programs, and individualized risk assessment can markedly reduce the likelihood of injury. Moreover, because the sport is non-contact and follows principles of controlled load progression, weightlifting is generally regarded as a relatively safe discipline compared with many other athletic activities (Hamill, 1994).

According to data from the U.S. Olympic Training Centers (USOTC), injuries among elite weightlifters are most frequently observed in the lower back, knees, and shoulders, accounting for 64.8% of injuries. The predominant types include strains or sprains (44.8%) and tendinitis (24.1%). The distribution of injury mechanisms was reported as 59.6% acute and 30.4% chronic (overuse-related). Importantly, in 90.5% of cases, the recommended training interruption was less than one day, highlighting the generally mild nature of most injuries and the rapid return-to-training capacity of rapid return to training among elite athletes (Calhoun & Fry, 1999).

These findings reinforce that, when proper load management, technical precision, and qualified coaching supervision are applied, Olympic weightlifting can be practiced safely across age groups and competitive levels. The sport's structured biomechanics, progressive overload methodology, and emphasis on movement control collectively contribute to its relatively low incidence of serious injuries compared with many contact and field-based sports.

9. Injury Incidence and Common Risk Regions

Granhed et al. (1988) conducted a long-term study on retired elite Swedish weightlifters and reported that the prevalence of low back pain was lower among former lifters than in a control group (23% vs. 31%). Physical examinations and radiological findings revealed no significant injury burden, although reduced intervertebral disc height was more common among weightlifters and is likely related to repetitive spinal loading during training. These results suggest that long-term participation in weightlifting may induce structural adaptations rather than degenerative pathologies, supporting the notion that the sport does not inherently increase injury risk.

Similarly, Hamill (1994) found that Olympic weightlifting exhibits substantially lower injury rates than high-contact sports such as football, basketball, or wrestling. The author emphasized that the non-contact nature of the sport, the controlled environment, and the strict emphasis on technical precision collectively contribute to its relative safety profile.

Chen et al. (2009) documented that patellar tendon ruptures, though rare, represent severe knee injuries among weightlifters. Most cases were associated with repeated corticosteroid injections, which may have compromised tendon integrity. Although technical errors or and inadequate recovery were not directly analyzed, the authors acknowledged that such biomechanical stressors could exacerbate tendon vulnerability.

Garhammer (1985) further demonstrated that peak barbell velocity and power output occur during the second pull and jerk phases, representing the moments of greatest biomechanical load. These phases generate the highest mechanical stress on the musculoskeletal system, underscoring the importance of precise movement sequencing and controlled load application to mitigate injury risk.

10. Injury Prevention Strategies

The literature identifies several multidimensional strategies aimed at preventing injuries in Olympic weightlifting (Granhed et al., 1988; Sitolertpisan et al., 2012). Central to these strategies are technically focused training programs and continuous supervision by qualified coaches. Both Hamill (1994) and Pierce et al. (2003) emphasized that injuries among youth and novice lifters typically result from improper technique and inadequate supervision. The authors concluded that when these risk factors are addressed through structured instruction and expert monitoring, Olympic weightlifting can be practiced safely at all developmental levels.

Core stabilization exercises have also been shown to be effective in reducing lumbar injuries. Sitolertpisan et al. (2012) demonstrated that the multifidus muscle shows significant activation in elite

lifters, suggesting its critical role in maintaining spinal stability. Integrating trunk stabilization and proprioceptive training into weightlifting programs may therefore serve as a key preventive strategy for both acute and overuse injuries.

11. Evaluation of Weightlifting as a Safe Sport

Pierce et al. (2003) reported no serious injuries among athletes aged 7–16 years who participated in supervised, technically oriented training programs. Over the course of one competitive year, which included 534 competition lifts, no medical interventions were required. These results provide strong evidence that Olympic weightlifting, when properly coached and age-appropriately programmed, poses minimal injury risk to young participants.

Granhed et al. (1988) found that the long-term prevalence of low back pain among retired elite weightlifters was lower than that of control subjects (23% vs. 31%), and clinical examination results were comparable between groups. However, a higher rate of intervertebral disc height reduction (62%) was observed among lifters, likely reflecting chronic axial loading rather than pathological degeneration. These findings suggest that while structural adaptations may occur, they do not necessarily translate into clinical impairment when appropriate technique and load management are applied.

The International Weightlifting Federation (IWF, 2020) has implemented several safety-oriented competition regulations designed to minimize risk and promote technical discipline. For instance, dropping the barbell behind the lifter is prohibited, and lifts performed with technical deviations are invalidated by the referee's decision. Such measures not only enhance competition safety but also reinforce biomechanical correctness and coaching precision across all performance levels.

Collectively, these findings and institutional regulations underscore that Olympic weightlifting, despite its high mechanical demands, can be considered a relatively safe sport when practiced under proper supervision, with sound technique, progressive load control, and adherence to established safety protocols.

12. Anthropometric Characteristics and Muscle Morphology

Among the determinants of successful performance in Olympic weightlifting, anthropometric parameters and muscle morphology play a pivotal role in both technical efficiency and injury prevention. Evidence from the literature indicates that specific body segment lengths, trunk-to-arm ratios, and muscle mass are closely related to lifting performance.

Turnagöl and Demirel (1992) examined elite Turkish weightlifters and reported significant differences among weight categories in terms of height, body mass, lean body mass, and body fat percentage. The study found that femoral epicondyle diameter and biceps circumference were significantly correlated with clean and jerk performance and total lifting performance. These findings suggest that athletes with lower body fat and higher muscle mass possess biomechanical and metabolic advantages, underscoring the relevance of anthropometric profiling in evaluating competitive potential.

Garhammer (1985) demonstrated that the highest levels of power output occur during the second pull and jerk phases, where barbell velocity peaks. These phases rely heavily on the coordinated activation of major muscle groups, particularly the hip and knee extensors. In a subsequent analysis, Takano (1992) emphasized that the distribution of muscular force production across body segments contributes to technical optimization and may explain observed differences between male and female lifters.

Regarding muscle morphology, ultrasound-based investigations have identified the multifidus muscle as particularly important in weightlifters. Sitilertpisan et al. (2012) found that multifidus thickness increases with training experience, suggesting a hypertrophic adaptation that contributes to enhanced spinal stability. Their results support the notion that chronic exposure to weightlifting-specific loading patterns strengthens deep spinal stabilizers, potentially mitigating the risk of low back injury.

In summary, achieving high-level performance in Olympic weightlifting requires not only technical proficiency but also optimal body composition and targeted muscular development. Favorable anthropometric characteristics allow shorter, more efficient bar trajectories, while hypertrophic and stabilizing adaptations in key muscle groups enhance performance capacity and resilience to injury.

13. Findings Related to Performance Parameters

The physiological and structural determinants of performance in Olympic weightlifting have been extensively examined in the literature. Variables such as force production, muscle morphology, biomechanical efficiency, neuromuscular coordination, and training age directly influence competitive outcomes. Storey and Smith (2012) demonstrated that maximal strength development depends not only on muscle hypertrophy but also on intramuscular coordination and motor unit synchronization. The authors emphasized that a higher proportion of fast-twitch muscle fibers and an enhanced neural firing frequency contribute significantly to explosive performance gains in weightlifting.

Turnagöl and Demirel (1992) reported that Turkish national weightlifters generally exhibit an endomesomorphic somatotype, characterized by high muscle mass and a moderate proportion of body fat. Comparisons across weight categories revealed significant differences in height, lean body mass, and body fat percentage. Specifically, heavyweight athletes tended to have higher body-fat percentages, whereas athletes in lighter-weight categories exhibited lower body-fat levels and greater relative leanness. These morphological variations were associated with biomechanical advantages in stability and force generation during lifts. The findings suggest that optimal performance results not solely from muscle size but from a balance between body composition and the technical demands of the lift.

Garhammer (1985) showed through biomechanical analyses that the second pull phase represents the point of maximal barbell acceleration and power output, making it the most critical determinant of successful lifting performance. The magnitude of vertical force applied during this phase directly influences the success of the lift. Although triple extension of the hip, knee, and ankle joints is widely recognized as the mechanical basis of this acceleration, Garhammer did not conduct a detailed segmental analysis in his early models.

Sitilertpisan et al. (2012) further demonstrated that active engagement of core musculature, particularly the multifidus, contributes not only to injury prevention but also to technical efficiency. The study found significant correlations between multifidus thickness, postural control, and movement stability in elite lifters. Additionally, data on muscle fiber composition in weightlifters indicate that a higher proportion of Type II (fast-twitch) fibers confers an advantage in explosive force production, reflecting the interplay between genetic predisposition and training-specific adaptations.

In conclusion, performance in Olympic weightlifting is determined by the integration of biomechanical precision, neuromuscular efficiency, and optimal morphological characteristics. Tailored training programs and periodic performance assessments allow for the systematic optimization of these factors, supporting both peak athletic output and long-term musculoskeletal health.

14. Muscle Morphology and Its Relationship to Injury

A substantial proportion of injuries in Olympic weightlifting are associated with imbalances in muscle morphology and insufficient stabilization mechanisms. The spinal musculature, in particular, plays a vital role in counteracting the high mechanical loads generated during lifts. Research in this area has consistently highlighted the importance of deep stabilizing muscles such as the multifidus and erector spinae in both performance optimization and injury prevention.

Sitilertpisan et al. (2012) conducted ultrasound analyses in elite weightlifters and found significant increases in lumbar multifidus thickness on both sides of the spine with increasing training experience. The degree of multifidus hypertrophy was directly correlated with spinal stability and was identified as a protective factor against lumbar injuries. Moreover, this structural adaptation contributes to improved postural control and technical accuracy, reinforcing the role of spinal stabilizers in maintaining biomechanical efficiency during high-load lifting.

In a related study, Suarez et al. (2020) investigated morphological parameters of the vastus lateralis in competitive male and female lifters. The cross-sectional area (CSA) of this muscle exhibited statistically significant correlations with isometric peak force (IPF), snatch performance, and loaded squat jump height (SJ20), demonstrating strong to very strong associations in female athletes. These results suggest that CSA is not merely a structural trait but a key predictor of specific performance outcomes. Interestingly, the relationship between CSA and clean and-jerk performance was not statistically significant, implying that this lift may depend more heavily on other technical or physiological factors.

Garhammer (1985) identified the second pull phase as the point at which vertical bar velocity and power output reach their peak, marking it as the biomechanically most demanding moment of the lift. Although his analyses did not directly quantify segmental forces or stabilization demands, subsequent research has supported the notion that trunk and spinal stability are crucial during this explosive phase to ensure optimal force transmission and injury prevention.

Granhed et al. (1988) reported that elite weightlifters exposed to chronic axial loading exhibited a 62% prevalence of intervertebral disc height reduction, suggesting long-term structural adaptation in the lumbar spine. Nevertheless, the prevalence of low back pain among lifters was lower than in control groups (23% vs. 31%), implying that even in the presence of morphological changes, well-conditioned athletes may remain functionally resilient and symptom-free.

In summary, there is a strong relationship between muscle morphology and injury risk in Olympic weightlifting. The structural development of deep spinal muscles not only prevents injuries but also contributes to sustained technical efficiency and performance stability. Regular assessment and targeted strengthening of the multifidus and erector spinae muscles are therefore recommended as key strategies for both performance enhancement and injury management in weightlifters.

15. Discussion

This review systematically examined the performance determinants, injury risk factors, sex- and age-related differences, and biomechanical characteristics unique to Olympic weightlifting. A substantial body of literature demonstrates that, contrary to popular belief, Olympic weightlifting is a technically grounded and developmentally beneficial sport when performed with structured supervision and proper training progression.

The primary determinants of performance in weightlifting include technical proficiency, neuromuscular coordination, individual anthropometric characteristics, and muscle strength. Garhammer (1985) emphasized the pivotal role of biomechanical factors, particularly technique and power generation, in distinguishing elite-level performance. Similarly, Garhammer (1992) and Takano & Garhammer (1992)

highlighted that lower-limb strength, along with the torque-generating capacity of the hip and knee extensors, is crucial in executing efficient lifting techniques.

Studies have consistently demonstrated a positive correlation between muscle cross-sectional area (CSA) and performance outcomes in Olympic weightlifting, especially in the quadriceps and trunk extensor muscles. Although Garhammer (1985) did not directly measure muscle CSA, his findings of peak power generation during the second pull and jerk phases indirectly support these relationships, reinforcing the importance of segmental strength in high-performance lifting.

Furthermore, Gardner et al. (2013) underscored the importance of terminological clarity in Olympic lifts such as snatch, power snatch, hang clean, and block lifts to ensure consistent technical communication among coaches and training programs. The accurate classification of these high-velocity movements facilitates more effective motor learning and enhances the transfer of sport-specific strength. The pedagogical use of block-start and hang-start positions has been found to improve technical development and reduce injury risk, particularly by maintaining optimal posture and minimizing spinal load during learning phases.

Brewer (2006) stated that technical execution directly affects biomechanical efficiency, noting that imbalances in load distribution caused by incorrect posture and pulling angles can decrease performance and increase injury risk. Brewer (2006) emphasized the central role of the double knee bend (DKB) in the effective execution of weightlifting techniques. This transitional phase allows for the accumulation of elastic energy in the knee extensors through the stretch-shortening cycle that occurs when the bar contacts the thighs, thereby enhancing explosive force production. Brewer argued that this technical element should not be learned randomly but taught intentionally through structured motor-learning sequences. The study indicated that exercises such as pulls from blocks, jump-shrug-throw drills, and other progressive learning tasks can help novice athletes adopt proper positions, thereby supporting both performance development and injury prevention.

Moreover, these techniques were found to promote neuromuscular coordination and accelerate the acquisition of technical proficiency. This finding is consistent with the observations of Hedrick and Wada (2008), who similarly emphasized the injury-preventive role of technical accuracy in Olympic lifting movements.

The risk of injury in weightlifting has long been debated. However, Granhed and Morelli (1988) reported that retired elite weightlifters experienced back pain at a rate similar to that of control groups, and these symptoms did not significantly affect daily life. Similarly, Raske and Norlin (2002) found an injury prevalence of 70.5% among elite weightlifters, with most injuries concentrated in the shoulder, knee, and lower back regions. The study emphasized that the majority of these injuries were due to overuse and that high training frequency and intensity were the main factors increasing injury risk. These findings highlight the need for careful planning of training loads and for technical proficiency. Furthermore, higher injury rates among powerlifters suggest that the technical diversity inherent in Olympic weightlifting may serve as a balancing factor mitigating injury risk (Raske & Norlin, 2002). These findings indicate that, despite high loads, Olympic weightlifting may not be as inherently dangerous as commonly assumed when proper technique and conditioning are applied.

Hamill (1994), in a study conducted in British secondary schools evaluating the relative safety of weightlifting and resistance training, reported an injury incidence of only 0.0013 per 100 participation hours. This rate is significantly lower than the rates observed in football (6.2), basketball (1.03), and track and field (0.26). The study also emphasized that this remarkably low incidence was associated with factors such as qualified supervision, prioritization of technical instruction, and gradual

progression of training loads. Hamill further noted that there are virtually no credible reports of epiphyseal plate injuries in children due to weightlifting, suggesting that common misconceptions about its dangers lack scientific support. These findings indicate that, when performed under proper supervision and with appropriate technique, weightlifting is a low-risk sport even for youth participants (Hamill, 1994).

A prospective study conducted by Calhoun and Fry (1999) at the United States Olympic Training Center followed elite weightlifters over six years and recorded 420 injuries. Among these, 59.6% were classified as acute injuries and 30.4% as overuse injuries. The most frequently affected regions were the lower back (23.3%), the knee (19.1%), and the shoulder (13.6%). Notably, 90.5% of injuries resulted in less than one day of lost training. This finding suggests that most weightlifting injuries are mild and can be effectively managed through appropriate load regulation and training strategies. Additionally, the study emphasized that severe injuries that occurred during competition were rare, underscoring the critical role of technical proficiency and structured training programs in fostering a safe sporting environment (Calhoun and Fry, 1999).

Several studies have reported a positive relationship between the cross-sectional area (CSA) of muscle groups such as the quadriceps and erector spinae and lifting performance. This relationship is supported by morphological adaptations in muscles that play critical roles in both performance and spinal stability. In an MRI-based study, Erdağı and Işık (2021) reported that Olympic weightlifters had a significantly larger CSA of the gluteus maximus than sedentary individuals, whereas no significant differences were found in the gluteus medius or gluteus minimus. These findings indicate that Olympic weightlifting induces specific hypertrophic adaptations in the hip extensor muscles due to high-intensity loading. Additionally, the preservation of bilateral muscle symmetry in both male and female athletes reflects the symmetrical loading patterns inherent in weightlifting techniques. These results suggest that Olympic weightlifting promotes gluteal and lumbopelvic stability while reducing the risk of injury associated with muscular imbalances (Erdağı and Işık, 2021).

Similarly, in an MRI study conducted by Erdağı and Poyraz (2020), the CSA of the erector spinae muscles at the L3–L4 level was found to be significantly greater in Olympic weightlifters than in sedentary controls. The researchers observed this hypertrophic adaptation in both male and female lifters and reported no significant asymmetry between the right and left sides. These findings demonstrate that Olympic weightlifting supports morphological development in spinal extensor muscles through high-intensity but symmetrical loading patterns, thereby helping to prevent muscular imbalances. Moreover, increased erector spinae muscle thickness contributes to spinal stability and improved trunk control during lifting, highlighting the protective potential of Olympic weightlifting for lower back health (Erdağı and Poyraz, 2020).

In another ultrasonographic study, Erdağı and Poyraz (2021) found that the CSA of the multifidus muscle at the L4–L5 level was significantly larger in Olympic-style weightlifters than in judokas and sedentary participants. These results indicate that weightlifting training induces pronounced hypertrophic adaptations in the multifidus muscle through high-intensity symmetrical loading. While no right–left asymmetry was observed in weightlifters, judokas exhibited significant asymmetry at the L5 level. This finding suggests that Olympic weightlifting provides balanced neuromuscular adaptations that enhance spinal stability and may contribute to long-term lower back health (Erdağı and Poyraz, 2021).

However, muscle volume alone is not the sole determinant of performance; neural adaptations are at least as critical as muscle morphology. Storey and Smith (2012) indicated that the development of

maximal strength depends on intramuscular coordination, motor unit synchronization, and the activation of fast-twitch (Type II) muscle fibers. These neuromuscular factors are directly associated with explosive power generation and technical timing in Olympic weightlifting.

Similarly, Stone et al. (2006) reported that high-intensity resistance training enhances explosive force production through neural adaptations and emphasized that the key components determining weightlifting performance are not limited to muscle size, but also involve the synchronized activation of motor units, synaptic efficiency, and technical execution. The authors also noted that, despite lower absolute strength levels, female athletes can achieve substantial performance improvements through appropriate training, while the effects of age can be mitigated by the quality of technical instruction.

Erdağı and Işık (2023) systematically examined age-related performance differences in Olympic weightlifting and reported that, among male lifters in U15 and youth categories, those born in the first quartile of the year were significantly overrepresented in top rankings. In contrast, this effect was only marginally present among female athletes. These findings suggest that biological maturation advantages are more pronounced in males and that training plans should distinguish between chronological and biological age. Similarly, Işık and Erdağı (2022), analyzing data from the European Weightlifting Championships (2015–2019), confirmed that the relative age effect (RAE) persists at the international level. Male athletes born in the first quartile (Q1) were more likely to win medals, particularly in youth categories, whereas the effect among female athletes was weaker. Together, these studies indicate that biological maturity exerts a decisive influence on talent identification and performance outcomes, highlighting the need to reconsider age-based classification systems in youth weightlifting.

Beyond age-related maturation, neuromuscular efficiency and morphological adaptations also play a critical role in sustaining high-level performance. Storey and Smith (2012) emphasized that maximal strength development depends not solely on muscle mass but also on intramuscular coordination, motor unit synchronization, and the efficient activation of fast-twitch (Type II) fibers. These neural adaptations directly support explosive power output and the technical timing required for Olympic lifts. Supporting this, Sitilertpisan et al. (2012) demonstrated that active engagement of the multifidus muscle enhances spinal stability, contributing to both technical precision and injury prevention. When morphological assessment is integrated with neuromuscular parameters, performance prediction becomes more accurate, underscoring the multidimensional nature of weightlifting proficiency.

From a medical perspective, injury prevention and treatment strategies must also be carefully structured. Chen et al. (2009) reported that patellar tendon ruptures, although rare, are among the most severe injuries observed in professional lifters and are often linked to repeated local steroid injections that weaken tendon integrity. These findings underscore that athlete safety is not determined solely by training load or technique, but also by medical interventions employed during recovery and rehabilitation. Effective clinical management, therefore, constitutes a critical component of long-term injury prevention in Olympic weightlifting.

Sex-related physiological and hormonal differences further modulate performance and injury susceptibility. Stone et al. (2006) observed that female athletes generally exhibit higher body fat percentages, lower absolute strength, and comparatively weaker upper-body musculature than male athletes, which necessitates gender-specific training strategies, particularly for overhead and upper-extremity strength development. Moreover, hormonal fluctuations across the menstrual cycle can influence neuromuscular performance, reinforcing the importance of individualized programming. Pierce et al. (2003) and Hamill (1994) both demonstrated that, when taught with proper technique and supervision, weightlifting is safe for youth and that poor technical execution, rather than chronological

age, constitutes the primary risk factor for injury. These findings collectively highlight that both age and gender factors should be integrated into holistic, evidence-based approaches to training and performance optimization in Olympic weightlifting.

16. Limitations and Future Research Directions

The literature on Olympic weightlifting is predominantly focused on elite athletes, resulting in limited data on amateur, youth, and female athletes. In particular, the influence of hormonal cycles on performance and recovery processes in female lifters remains underexplored. Likewise, the long-term effects of weightlifting on spinal stability and loading patterns in older adults have not been clearly established.

Research examining the role of deep stabilizing muscles, such as the multifidus, during specific lifting techniques remains scarce. The adaptive responses of these muscles to chronic, high-intensity training loads are not yet well understood. Moreover, the comparative biomechanical implications of technical variations (e.g., hang vs. full lifts) on muscle activation and load distribution have not been sufficiently addressed in the literature.

Future research should employ prospective, biomechanically supported longitudinal designs to monitor injury incidence and musculoskeletal adaptations across different athlete groups. Comparative studies encompassing diverse age ranges, sexes, and training backgrounds would provide a more comprehensive understanding of performance determinants and injury mechanisms. Additionally, intervention-based research aimed at optimizing training program design for both performance enhancement and injury prevention would help close a critical gap in the current body of knowledge.

17. Conclusions

Olympic weightlifting is a complex performance discipline that requires the simultaneous integration of technical mastery, maximal strength, and neuromuscular coordination. This literature review examined the sport from multiple perspectives, including technical structure, biomechanical parameters, muscle morphology, anthropometric determinants, sex- and age-related variability, and injury risk factors. Collectively, the evidence indicates that, contrary to common misconceptions, Olympic weightlifting is a relatively safe and highly trainable sport when performed under systematic supervision and with proper technical instruction.

Findings on muscle morphology highlight significant associations between the cross-sectional area (CSA) of the multifidus, erector spinae, and quadriceps muscles and both performance outcomes and injury risk. The activation of deep postural muscles contributes not only to spinal stability but also to biomechanical efficiency and long-term injury prevention. During high-stress phases such as the second pull and jerk, the coordinated engagement of these stabilizing muscles plays a crucial role in maintaining technical precision and sustaining performance capacity.

Anthropometric characteristics are also fundamental predictors of success in Olympic weightlifting. Segment lengths, limb circumferences, and body composition parameters can confer biomechanical advantages by optimizing bar path and lifting efficiency. Therefore, individualized training programs structured according to the athlete's anthropometric and morphological profile can effectively enhance performance while minimizing injury risk.

Sex- and age-related factors significantly influence biomechanical variation and physiological adaptation processes. For youth athletes, the quality of technical instruction and coaching supervision, rather than the age at initiation, appears to be the primary determinant of safe and effective development.

For female lifters, hormonal and anatomical differences necessitate tailored training loads and technical instruction strategies to optimize performance and reduce injury risk.

Comparative analyses across sports demonstrate that Olympic weightlifting exhibits a lower injury incidence than that observed in contact-based disciplines. The majority of injuries are linked to technical deficiencies, asymmetrical loading, or inadequate supervision. As such, structured motor-learning strategies, neuromuscular stabilization exercises, and periodic technical assessments, when integrated into multidisciplinary training frameworks, represent critical components of injury prevention.

In conclusion, Olympic weightlifting, when implemented through precise technical instruction, individualized periodization, and evidence-based monitoring of neuromuscular and biomechanical parameters, emerges as a discipline that successfully combines high performance potential with a low risk of injury. Coaches, sport scientists, and health professionals should therefore adopt a holistic, evidence-informed model that integrates physiological, biomechanical, and neuromuscular dimensions to ensure both the safety and peak performance of athletes.

References

Aasa, U., Svartholm, I., Andersson, F., & Berglund, L. (2017). Injuries among weightlifters and powerlifters: A systematic review. *British Journal of Sports Medicine*, 51, 211–219. <https://doi.org/10.1136/bjsports-2016-096037>

Brewer, C. (2006). Weightlifting technique: Observations and coaching practice.

UK Strength & Conditioning Association (UKSCA) Newsletter, 19-23 October 2006. (http://www.jerseytouch.co.uk/uploads/2/9/3/2/2932124/weightlifting_technique.pdf)

Calhoon, G., & Fry, A. C. (1999). Injury rates and profiles of elite competitive weightlifters. *Journal of Athletic Training*, 34(3), 232–238.

Chen, S.-K., Lu, C.-C., Chou, P.-H., Guo, L.-Y., & Wu, W.-L. (2009). Patellar tendon ruptures in weight lifters after local steroid injections.

Archives of Orthopaedic & Trauma Surgery, 129, 369-372. <https://doi.org/10.1007/s00402-008-0655-1>

Erdağı, K., & Poyraz, N. (2020). The determination of the cross-sectional area of the lumbar erector spinae muscles of Olympic-style weightlifting athletes by using MRI. *Journal of Back and Musculoskeletal Rehabilitation*, 33(3), 405–412. <https://doi.org/10.3233/BMR-191725>

Erdağı, K., & Poyraz, N. (2021). Study on the cross-sectional area of the multifidus muscle at the L4-L5 level on ultrasound images of Olympic-style weightlifting and judo athletes. *Journal of Back and Musculoskeletal Rehabilitation*, 34(4), 689–696. DOI: 10.3233/BMR-200101

Erdağı, K., & Işık, B. (2021). The study of the cross-sectional areas of the gluteal muscles on magnetic resonance images of weightlifting athletes. *Progress in Nutrition*, 23(3), e2021300. <https://doi.org/10.23751/pn.v23i3.12068>

Erdağı, K. (2022). Olimpik Halter Eğitimi ve Ağırlık Antrenmanlarında Çalışan Kas Grupları. Ankara: Türk Eğitim Yayıncılığı. ISBN 978-625-7247-35-1 (In Turkish).

Erdağı, K., & Işık, B. (2023). The study of relative age effects on weightlifting athletes in U15 and youth age groups. *Turkish Journal of Kinesiology*, 9(1), 7–15. <https://doi.org/10.31459/turkjk.1242562>

Garhammer, J. (1980). Power production by Olympic weightlifters. *Medicine and Science in Sports and Exercise*, 12(1), 54–60. <https://doi.org/10.1249/00005768-198021000-00011>

Garhammer, J. (1985). Biomechanical profiles of Olympic weightlifters. *International Journal of Sport Biomechanics*, 1(2), 122–130.

Garhammer, J., & Takano, B. (1992). Training for weightlifting. In P. V. Komi (Ed.), *Strength and power in sport* (pp. 471–483). Oxford, UK: Blackwell Scientific Publications. (ISBN: 9780632030316)

Gardner, S. H., Dombrowski, T., & Gough, J. D. (2013). What is the catch? Clarifying weightlifting exercises and terminology. *NSCA Coach*, 2(1). Retrieved from https://www.nsca.com/education/articles/nsca-coach/what-is-the-catch-clarifying-weightlifting-exercises-and-terminology/?srsltid=AfmBOorwySaOBQ1_V8LAUgzhA0KQTLamR6NWBqXBptS0EL-bmb39Le

Granhed, H., & Morelli, B. (1988). Low back pain among retired wrestlers and heavyweight lifters. *The American Journal of Sports Medicine*, 16(5), 530–533. <https://doi.org/10.1177/036354658801600515>

Hamill, B. P. (1994). Relative safety of weightlifting and weight training. *Journal of Strength and Conditioning Research*, 8(1), 53–57. <https://doi.org/10.1519/00124278-199402000-00008>

Hedrick, A., & Wada, H. (2008). Weightlifting movements: Do the benefits outweigh the risks? *Strength & Conditioning Journal*, 30(6), 26–35. <https://doi.org/10.1519/ssc.0b013e31818ebc8b>

International Weightlifting Federation (IWF). (2020). Technical and competition rules & regulations. Retrieved March 10, 2025, from https://iwf.sport/weightlifting_rules/

İşik, B., & Erdağı, K. (2022). The relative age effect in the European Weightlifting Championships 2015–2019 (male and female). *Medicina dello Sport*, 75(4), 546–559. <https://doi.org/10.23736/S0025-7826.22.04182-5>

Pierce, K. C., Byrd, R. J., & Stone, M. H. (2003). Position Statement and Literature Review: Youth Weightlifting. *Olympic Coach*, Volume 18, Number 3.

Quatman, C. E., Myer, G. D., Khoury, J., Wall, E. J., & Hewett, T. E. (2009). Sex differences in "weightlifting" injuries presenting to United States emergency rooms. *Journal of Strength and Conditioning Research*, 23(7), 2061–2067. <https://doi.org/10.1519/jsc.0b013e3181b86cb9>

Raske, Å., & Norlin, R. (2002). Injury incidence and prevalence among elite weight and power lifters. *The American journal of sports medicine*, 30(2), 248–256. <https://doi.org/10.1177/03635465020300021701>

Sitilertpisan, P., Hides, J., Stanton, W., Paungmali, A., & Pirunsan, U. (2012). Multifidus muscle size and symmetry among elite weightlifters. *Physical Therapy in Sport*, 13(1), 11–15. <https://doi.org/10.1016/j.ptsp.2011.04.005>

Stone, M. H., Pierce, K. C., Sands, W. A., & Stone, M. E. (2006). Weightlifting: A brief overview. *Strength & Conditioning Journal*, 28(1), 50–66. <https://doi.org/10.1519/00126548-200602000-00010>

Storey, A., & Smith, H. K. (2012). Unique aspects of competitive weightlifting: Performance, training and physiology. *Sports Medicine*, 42(9), 769–790. <https://doi.org/10.2165/11633000-000000000-00000>

Suarez, D. G., Slaton, J. A., Davis, M. W., Rochau, K. G., Bruno, M. A., & Stone, M. H. (2020). Relationships between lower body musculature and performance in competitive male and female weightlifters. *East Tennessee State University, 14th Annual Coaching and Sport Science College Conference Paper*. <https://www.researchgate.net/publication/338487179>

Turnagöl, H. H., & Demirel, H. (1992). Türk milli haltercilerinin somatotip profilleri ve bazı antropometrik özelliklerinin performansla ilişkisi. *Spor Bilimleri Dergisi (SBD)*, 3(3), 11–18. (In Turkish).

USA Weightlifting. (2015). Advanced weightlifting & sport performance manual. USA Weightlifting. <https://digitallibrary.punjab.gov.pk/items/6e50d0ad-dc21-45cf-a438-e6e5d38a687c>

Data Availability Declaration

This study is a narrative review and does not involve the collection or analysis of primary data. Therefore, no datasets were generated or used.

Author Contributions: Conceptualization, literature review, and drafting of the original manuscript: Z.K. and K.E. Critical review, editing, and refinement of the final manuscript: Z.K. and K.E. Both authors have read and approved the final version and accept full responsibility for its content.

Author(s)' statements on ethics and conflict of interest

Ethics statement: We hereby declare that research/publication ethics and citing principles have been considered in all the stages of the study. We take full responsibility for the content of the paper in case of dispute.

Statement of interest: The authors declare that there is no conflict of interest.

Funding: This review received no external funding. The authors independently conducted and self-funded the work.

Acknowledgements: I thank all the researchers whose academic work formed the foundation of this review.

Biographical notes:

Zehra KILINCARSLAN: Zehra Kılincarslan is a master's student in the Department of Physical Education and Sports at Necmettin Erbakan University. Her academic interests include Olympic weightlifting, performance analysis, and youth athlete development.
ORCID: <https://orcid.org/0009-0003-1703-7846>

Kenan ERDAĞI: Kenan Erdağı is an academic staff member at the Department of Physical Education and Sports, Necmettin Erbakan University. His research focuses on Olympic weightlifting biomechanics, muscle morphology, and bar-path analysis in elite and youth lifters.

Web of Science Researcher ID: <https://www.webofscience.com/wos/author/record/AAD-1538-2021>

Google Scholar Researcher ID:

<https://scholar.google.com.tr/citations?user=N1gSOf4AAAAJ&hl=tr>

Scopus Author Identifier Number: <https://www.scopus.com/authid/detail.uri?authorId=57206241941>